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A B S T R A C T

Working memory, a fundamental cognitive function that is highly dependent on the integrity of the prefrontal cortex, is known to show age-related decline across the
typical healthy adult lifespan. Moreover, we know from work in neurophysiology that the prefrontal cortex is disproportionately susceptibly to the pathological effects
of aging. The n-back task is arguably the most ubiquitous cognitive task for investigating working memory performance. Many functional magnetic resonance imaging
(fMRI) studies examine brain regions engaged during performance of the n-back task in adults. The current meta-analyses are the first to examine concordance and
age-related changes across the healthy adult lifespan in brain areas engaged when performing the n-back task. We compile data from eligible fMRI articles that report
stereotaxic coordinates of brain activity from healthy adults in three age-groups: young (23.57� 5.63 years), middle-aged (38.13� 5.63 years) and older
(66.86� 5.70 years) adults. Findings show that the three groups share concordance in the engagement of parietal and cingulate cortices, which have been consistently
identified as core areas involved in working memory; as well as the insula, claustrum, and cerebellum, which have not been highlighted as areas involved in working
memory. Critically, prefrontal cortex engagement is concordant for young, to a lesser degree for middle-aged adults, and absent in older adults, suggesting a gradual
linear decline in concordance of prefrontal cortex engagement. Our results provide important new knowledge for improving methodology and theories of cognition
across the lifespan.
1. Introduction

Working memory is a fundamental cognitive ability that allows one to
hold and manipulate information in mind for a short period of time
(Baddeley and Hitch, 1974). One of the most popular measures of
working memory is the n-back task (Kirchner, 1958). A rigorous
behavioural meta-analysis on n-back performance across the lifespan
documents significant age-related deficits (Bopp and Verhaeghen, 2018).
Numerous functional magnetic resonance imaging (fMRI) studies have
used the n-back task since the mid 1990's and the first adult
meta-analyses of such studies appeared in 2005 by Owen and colleagues.
Results showed that a consistent set of brain areas are engaged during
performance of the n-back task, including parietal and prefrontal areas
(e.g., Owen et al., 2005). Subsequent meta-analyses confirmed these
findings in adults (Rottschy et al., 2012). A meta-analysis that examined
brain responses during performance of the n-back task in children
showed that they engage the prefrontal cortex less consistently than
adults (Yaple and Arsalidou, 2018). Indeed, the prefrontal cortex has a
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protracted development; it is one of the last regions to fully mature
(Gogtay et al., 2004) and it is also one of the first regions to deteriorate
due to aging (Raz et al., 1997; Nyberg et al., 2010; Minkova et al., 2017).
Importantly, we also know from behavioural research that working
memory performance across different tasks and contrasts differs across
young, middle-aged, and older adults (e.g., Park et al., 2002; Hasher
et al., 2007; Healey et al., 2008; Cansino et al., 2013; Kato et al., 2016;
Bopp and Verhaeghen, 2018). Behavioural changes correspond with
age-related changes observed in gray matter and functional activity
across the adult lifespan (e.g., Rypma and D'Esposito, 2001; Nagel et al.,
2009; Nagel et al., 2011; Grady, 2012). Moreover, studies examining
relations among individual and age-related differences in cognitive per-
formance and intrinsic or “resting-state” functional connectivity (RSFC;
for review, see Stevens and Spreng, 2014) have shown a relation between
working memory performance and RSFC strength among distributed
nodes of large-scale functional networks (Gordon et al., 2012; Hampson
et al., 2006; Keller et al., 2015; Reineberg et al., 2018; for meta-analysis,
see Roski et al., 2013). Hence, in addition to the prominent age-related
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changes in gray matter integrity (Haug and Eggers, 1991; Raz et al.,
2005) and task-related functional activation in the prefrontal cortex
(Grady, 2008), alterations in RSFC of large-scale functional networks
(Chan et al., 2014; Geerligs et al., 2014; Spreng et al., 2016) most likely
contribute to working memory decline in older adults. Given the
behavioural and neurophysiological changes observed across adulthood,
changes in brain activity associated with n-back task performance might
be expected as well (West, 1996; Raz, 2000), particularly in the
engagement of the prefrontal cortex, which decreases in white matter as
a function of age (Tang et al., 1997; Tisserand et al., 2004; Raz et al.,
2005).

Functional brain correlates of working memory capacity have been
investigated by tasks that manipulate task complexity. Typically, task
complexity is manipulated by either increasing the number of display
items to be processed (e.g., Sternberg task; Altamura et al., 2007 and
colour matching task; Arsalidou et al., 2013a) or by increasing the time
interval between a sample stimulus and comparison stimuli –

delayed-match-to-sample task (e.g., Simons et al., 2006; Picchioni et al.,
2007; H€oller-Wallscheid et al., 2017). The Sternberg task (Sternberg,
1966) requires participants to indicate whether one item out of a larger
set of items that can vary from 1 to 7 was present in the original set. The
colour matching task also follows a match-to-sample design and manip-
ulates the number of items (n¼ 1–6) that need to be maintained and
manipulated; unlike the Sternberg task, the colour matching task requires
a match on all items. In a typical delayed-match-to-sample task, the time
delay is manipulated to examine the length of time a participant can
retain information in working memory. Therefore, the Sternberg and
colour matching tasks increase cognitive load by adding more items,
while the delayed-match-to-sample task increases cognitive load by
introducing interference through an increasing time delay. Although,
these tasks are good measures of working memory, they have not been
used extensively with older adult participants. Past meta-analyses have
combined data from various working memory tasks in adults (Rottschy
et al., 2012), however, to minimize confounds related to variables
associated with different workingmemory paradigms, here we focus only
on n-back tasks. Our meta-analyses are the first to compare and contrast
brain areas engaged during n-back task performance across the adult
lifespan: young, middle-aged, and older adults.

Performing the n-back task requires participants to indicate when
some aspect of the currently presented stimulus is the same as that pre-
sented some defined number (“n”) of trials previously. Difficulty in the
task is varied by changing the value of n; e.g., 0-back (i.e., press a button
when you see a specified target), 1-back (i.e., press a button if the current
stimulus matches the immediately preceding stimulus), 2-back (i.e., press
a button if the current stimulus matches the stimulus two trials back), etc.
Thus, there are both common and distinct processes associated with
different levels of n in the n-back task. A typical 0-back task would draw
mainly upon identification and maintenance processes, because the cri-
terion stimulus (e.g., the letter X) must be maintained in working
memory for the duration of the task, or until the criterion stimulus
changes. A typical 1-back task would draw upon identification, mainte-
nance, and updating processes, as every stimulus serves as the criterion
for the subsequent trial, and thus, the stimulus must be maintained and
the criterion updated on each trial. A typical 2-back task would draw
upon identification, maintenance, updating, and inhibition of distractors,
because between every criterion and potential target, there is an addi-
tional stimulus that needs to be maintained but also inhibited if matched
on the ensuing trial. Therefore, the common processes engaged across all
levels of n in the n-back task are identification and maintenance, which
are key characteristics of what defines workingmemory (i.e., holding and
manipulating information in mind; Miyake and Shah, 1999; Miller and
Cohen, 2001; Marshuetz, 2005; Schmiedek et al., 2009). Although there
are also the aforementioned distinct processes engaged across different
levels of n, meta-analyses of concordance across different n-back tasks
would be sensitive to the common working memory processes, and not
the distinct processes, across differing tasks.
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fMRI contrasts used to identify brain activity associated with working
memory using the n-back task vary across studies. While some studies
compare n-back tasks to a lower level control task with no working
memory component (e.g., 1-back> baseline), others contrast n-back
conditions with higher vs. lower levels of n, thus measuring working
memory load (e.g., 1-back> 0-back, 2-back> 1-back, 2-back> 0 back,
etc.). Still, others tend to measure working memory load by using linear
trend of n to identify regions that show a monotonic change in activity
(e.g., 3> 2 > 1). Importantly, despite the differences between these
contrasts, they all identify brain regions that show a significant increase
in activity as working memory load increases. Thus, meta-analyses of
studies using varying n-back contrasts will identify concordant brain
activity associated with working memory per se, rather than other pro-
cesses that vary across different task contrasts.

Because n-back tasks are typically visually presented, with controlled
time intervals and manual responses, the n-back task lends itself for use
with neuroimaging. The majority of neuroimaging studies of the n-back
task have examined young adults. Notably, fMRI meta-analyses show
concordance in locations of peak brain activity reported across studies.
One study reported concordance in fronto-parietal regions, which
included ventrolateral, dorsolateral, and frontopolar prefrontal cortex
(Brodmann Area (BA) 46, 9, and 10), in addition to the dorsal cingulate
(BA 32) and premotor cortex (BA 6; Owen et al., 2005). These results
were replicated in subsequent meta-analyses with healthy adults that
included other working memory measures, such as the Sternberg task
(Rottschy et al., 2012). However, previous fMRI meta-analyses with
healthy adults examined brain correlates across adults ranging in age
between 18 and 64 years (Owen et al., 2005) and 18–77 years (Rottschy
et al., 2012), despite the fact that substantial changes in brain activation
associated with working memory across the adult lifespan are well
documented (e.g., Rajah and D'Esposito, 2005; Grady, 2008; Reuter--
Lorenz and Capell, 2008; Zanto and Gazzaley, 2014). Thus, there is a
critical need for meta-analyses that investigate age-related changes in
concordant patterns of brain activation supporting working memory, a
cognitive process that is known to decline in aging (Park and
Reuter-Lorenz, 2009; Reuter-Lorenz and Park, 2010).

Brain areas supporting working memory, and the n-back task in
particular, are generally well established; however, it remains unclear
how underlying brain activity varies as a function of age. Some neuro-
imaging studies suggest that increased brain activity in older adults may
reflect a compensatory mechanism, whereas decreased activity in older
adults may indicate degeneration of function (e.g., Sala-Llonch et al.,
2015; Reuter-Lorenz and Cappell, 2008; Park and Reuter-Lorenz, 2009;
Cappell et al., 2010; Zanto and Gazzaley, 2014). For example,
hyper-activations of the prefrontal lobe are typically reported in older
adults (Grady et al., 2007; Di et al., 2014; see Grady, 2008 for review),
which have been interpreted as reflecting compensation for reduced ef-
ficiency of executive processes (Rypma and D'Esposito, 2000; Rypma
et al., 2005; Motes and Rypma, 2010) as the result of anatomical
degradation (Bennett et al., 2012). In a systematic approach, we sum-
marize the prefrontal cortex regions associated with performance of the
n-back task, as reported by fMRI studies that examined older adults
(Table 1). While some studies report bilateral activity in prefrontal cortex
(Heinzel et al., 2016; Scheller et al., 2017; Seo et al., 2014), others report
only left (e.g., Berger et al., 2015; Oren et al., 2017) or right prefrontal
cortex activity (e.g., D€ohnel et al., 2008; Lim et al., 2008). Yet others
report no suprathreshold activity in prefrontal cortex (e.g., Gawrys et al.,
2014; Luis et al., 2015). While no single study is definitive, meta-analyses
can provide valuable information on the convergence of findings across
multiple studies. Thus, quantitative meta-analyses provide a powerful
tool for identifying consistent patterns across studies and are ideally
suited for addressing hypotheses regarding age-related changes in brain
activity associated with the n-back task across the lifespan.

Based on previous meta-analyses that have demonstrated robust
concordance of activity within prefrontal and parietal areas across the
healthy adult population broadly, we hypothesize that young adults



Table 1
List of reported prefrontal cortex regions (Brodmann areas) activated in older adults performing the n-back.

Right Left

IFC MidFC MedFC SFC OFC IFC MidFC MedFC SFC OFC

Berger et al. (2015) ●

D€ohnel et al. (2008) 9*
Gawrys et al. (2014)
Heinzel et al. (2016) ● ● ● ● ● ● ● ●

Lee et al. (2013) 9/44-46 6/8/9 6 10/44-47 8/9/10 6
Lim et al. (2008) 9
Luis et al. (2015)
McGeown et al. (2008) 9/46
Migo et al. (2015) 46*
Oren et al. (2017) ●

Scheller et al. (2017) ● ● ● ● ● ● ● ●

Seo et al. (2014) ● ●* ● ●* ●*
Waiter et al. (2009) 9 8

Note: IFC ¼ Inferior frontal cortex; MidFC ¼Middle frontal cortex; MedFC ¼Medial frontal cortex; SFC ¼ Superior frontal cortex; OFC ¼ Orbitofrontal cortex; ● ¼ BA
not reported; * ¼ prefrontal cortex in article.
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would indeed show strong concordance of working memory-related ac-
tivity in these regions. We also hypothesize that any age-related differ-
ences in concordant brain activity within the older adult group would be
most prominent within the prefrontal cortex, given that this region shows
the earliest and most disproportionate anatomical and functional de-
clines in aging (Raz et al., 1997; Nyberg et al., 2010; Minkova et al.,
2017). Further, based on previous reports of task-related hyper-activity
of prefrontal cortex regions in older adults, and a previous meta-analysis
of working memory tasks (which did not include any studies using the
n-back task) that reported increased prefrontal cortex activity bilaterally
in older adults relative to young adults (Turner and Spreng, 2012), one
might expect older adults to show more spatially extensive concordance
in prefrontal cortex activity during the n-back task. However, given the
extreme variability in the location, extent, and laterality of prefrontal
cortex regions engaged during the n-back task in older adults reported in
the literature (see Table 1), we hypothesized that older adults would
show reduced concordance of activity across the prefrontal cortex, rela-
tive to young adults. Finally, compared to studies focusing on somewhat
narrow age-ranges of young and older adults, there is a relative paucity of
studies focusing on the middle-aged adult population; thus, hypotheses
regarding this population are not straightforward. Nevertheless, studying
the middle-aged population can provide critical information regarding
the trajectory of age-related changes/declines in working memory per-
formance and associated brain correlates across the adult lifespan; e.g., if
middle-aged adults more closely resemble younger adults, this would
suggest that declines might become increasingly precipitous in later
years. Conversely, if performance and brain correlates were intermediate
relative to young and older adults, this would suggest a more gradual,
linear decline. Given evidence across several working memory tasks that
age-related declines are gradual/linear across the adult lifespan (Park
et al., 2002) we hypothesize that middle-age adults may show an inter-
mediate degree of concordance of prefrontal cortex activity relative to
the young and older groups.

2. Methods

2.1. Literature search and article selection

Firstly, we compiled 29 eligible articles identified in a previous meta-
analysis (Rottschy et al., 2012), which we divided into corresponding
age-groups. To update the previous meta-analyses, additional eligible
articles were identified with another search in the Web of Science
database (http://www.webofknowledge.com). This search used the key
terms “n-back” & “fMRI”, included articles published between 2011 to
December 4th, 2017, and excluded articles not written in English,
yielding a total of 372 articles. Eligible articles included those with
various load effects (e.g., 2-back > 0-back, 3-back > 2-back, etc.) to
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correspond with previous fMRI meta-analyses on working memory
(Owen et al., 2005; Rottschy et al., 2012; Yaple and Arsalidou, 2018). To
include more studies focusing on older age-groups, we identified more
articles using the key terms “n-back” & “fMRI” & “older”, which yielded
42 articles; another search using the terms “n-back” & “fMRI” & “aging”
without a time limitation yielded 155 articles. All articles excluded older
adults with dementia, head injury, stroke or any neurological or psy-
chiatric diseases assessed by the Mini-Mental State Examination (Folstein
et al., 1975; e.g., Lim et al., 2008; McGeown et al., 2008; Lee et al., 2013;
Luis et al., 2015; Heinzel et al., 2016), Consortium to Establish a Registry
for Alzheimer's Disease (Fillenbaum et al., 1996; Berres et al., 2000; e.g.,
D€ohnel et al., 2008; Berger et al., 2015), Montreal Cognitive Assessment
(Nasreddine et al., 2005; e.g., Oren et al., 2017; Scheller et al., 2017), or
by medical examination (Waiter et al., 2009; Gawrys et al., 2014; Migo
et al., 2015; Seo et al., 2014). After removing duplicates, the total articles
that were screened were 417. Fig. 1 shows the yield of the searches and
the steps taken to screen and identify eligible articles. Specifically, arti-
cles that used the n-back task with fMRI and reported whole-brain,
random-effects results of within-group experiments (i.e., contrasts) in
adults were included in the meta-analysis. Coordinates needed to be re-
ported either in Talairach or Montreal Neurology Institute (MNI) coor-
dinate space. Two investigators (authors M.A. and Z.A.Y.) independently
selected articles meeting these criteria, and final decisions were made in
agreement. The final dataset contained data from 82 eligible articles,
which were then divided into three age-groups. Because our main
between-group variable was age, we excluded studies that tested groups
with large age-ranges (e.g., 18–70 years). Eligible studies included those
that contained age ranges between 18 and 35 years of age for young
adults, 30–55 years for middle-aged adults, and 55–85 years for older
adults. Several studies within the middle-aged adult group included
mean ages that were on the boundary of the young (McAllister et al.,
1999; Clark et al., 2017; Nichols et al., 2014) or older (Gawrys et al.,
2014; Seo et al., 2014) age-groups. Hence, the age-range for middle-aged
adults was adjusted to systematically dichotomize these studies. This
adjustment of age-range was based on the mean and standard deviation
for those particular studies. Because the participant age-ranges were
predetermined by the authors of the original studies, some overlap of the
upper and lower tails of the age distributions for the young and
middle-aged groups, respectively, was unavoidable in the meta-analyses
for these age-groups. However, it is important to note that overlap of the
two distributions was minimal, and the subject groups and foci included
in the three meta-analyses were mutually exclusive. Mean ages
(�standard deviation) in our resulting groups were 23.57� 5.63 years
for young adults, 38.13� 5.63 years for middle-aged adults, and
66.86� 5.70 years for older adults. The age means and ranges for each
original article are reported in Tables 2–4. Several articles reported more
than one relevant experiment (i.e., contrast, see Tables 2–4), all of which

http://www.webofknowledge.com


Fig. 1. Prisma flowchart for identification and eligibility of articles (template by Moher et al., 2009). n¼ number of articles, a¼One article included data for two
subject groups with different age-groups (Oren et al., 2017).
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were included in the analyses to improve statistical power, as the latest
ALE (i.e., activation likelihood estimation) analysis algorithm accounts
for within-group effects (Turkeltaub et al., 2012).
2.2. Software tools

2.2.1. Activation likelihood estimation analysis
GingerALE is a freely available, quantitative meta-analysis method

first proposed by Turkeltaub et al. (2002), with the latest version
described by Eickhoff and colleagues (2009; 2017) and Turkeltaub and
colleagues (2012). GingerALE, version 2.3.6 was used, which relies on
ALE (http://brainmap.org/ale/). ALE compares coordinates (i.e., foci)
compiled from multiple articles and estimates the magnitude of overlap
among foci, yielding clusters most likely to become active across studies.
The most recent algorithm minimizes within-group effects and provides
increased power by allowing for inclusion of all possible relevant ex-
periments (Turkeltaub et al., 2012; Eickhoff et al., 2017). All coordinates
were transformed into a common atlas space: MNI coordinates were
converted to Talairach using the Lancaster et al. (2007) transformation
algorithm. Resulting statistical maps were thresholded at p< 0.05 using
a cluster-level correction for multiple comparisons and a cluster forming
threshold at p< 0.001 (Eickhoff et al., 2017), rather than false discovery
rate that is not appropriate for inference on topological features (Eickhoff
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et al., 2016). Analyses contrasting the different age-groups were also
performed. Tests for differences and conjunction analysis were used to
examine results for ALE maps associated with n-back performance be-
tween age-groups. The threshold for group-contrasts was set to p< 0.001
uncorrected for multiple comparisons (5000 permutations, 50mm3

minimum cluster-size), because group-contrast analyses use cluster-level
thresholded ALE maps for each group, which have already been
controlled for multiple comparisons. Permutations at the contrast level
are used to correct for variability among studies (Eickhoff et al., 2011).
Specifically, pooled foci from the different conditions are randomly
divided into groupings of the same size as the original datasets to create
simulated data. For each permutation, an ALE image is created, sub-
tracted from the other dataset, and compared to the original data. After
multiple permutations, a voxel-wise p-value image reveals where the
values of the true data sit on the distribution of values in that voxel.

2.2.2. Effect-size seed-based d mapping (ES-SDM): meta-regression
The effect-size seed-based d mapping (ES-SDM) toolbox from the

Seed-based d Mapping project (http://www.sdmproject.com) was used
to perform meta-regression to determine voxel values covarying with
specified regressors (Radua and Mataix-Cols, 2012). ES-SDM is based on
activation likelihood estimation yet combines statistical parametric
t-maps and peak coordinates of clusters from multiple studies to increase

http://brainmap.org/ale/
http://www.sdmproject.com


Table 2
Information on source datasets included in the meta-analysis for young adults.

Article n Male Hand (R) Mean (SD), range Foci RT diff (ms)1 Accuracy diff (%)2 Task Modality Contrast

Allen et al. (2006) 10 8 All 23–35 6 60 6 Letter n back 2 back> 0 back
Beneventi et al. (2007) 12 6 All 21–29 24 NA NA Face n back Linear trend
Binder and Urbanik (2006)a 12 7 All 23.52; 20-29 19 NA NA Letter n back 2 back> 0 back
Binder and Urbanik (2006)a 17 Shape n back 2 back> 0 back
Campanella et al. (2013) 32 14 All 21.2 (~2.2) 6 96 1.8 Digit n back 2 back> 0 back
Choo et al. (2005) 14 9 All 21.8 (0.8) 8 65 4.5 Letter n back Linear trend
Ciesielski et al. (2006) 10 5 All 23.5; 20.4–27.6 15 NA NA Categorical n back 2 back> 0 back
Cohen et al. (1997) 10 5 NA 18–34 9 NA NA Letter n back Linear trend
Dores et al. (2017) 10 6 All 27.1 (2.27); 21-30 20 NA NA Visuospatial n back 2 back> baseline
Druzgal & D'Esposito (2001) 9 5 All 21–27 12 79.8 28.6 Face n back Linear trend
Duggirala et al. (2016)a 50 28 All 23.62 (3.17) 13 NA NA Categorical n back 2 back> 0 back
Duggirala et al. (2016)a 15 Face n back 2 back> 0 back
Duggirala et al. (2016)a 18 Letter n back 2 back> 0 back
Falkenberg et al. (2015) 15 10 All 25.6; 19-35 9 NA 0.8 Letter n back 2, 1-back> 0 back
Fusar-Poli et al. (2011) 15 9 All 25.18 (5.07) 8 NA NA Letter n back Linear trend
Gillis et al. (2016) 15 15 All 25.13; 18-36 34 0 3 Categorical n back 2 back> 0 back
Johannsen et al. (2013) 12 4 All 26.1 14 NA 7 Letter n back 2 back> 0 back
Lamp et al. (2016) 16 5 All 23.94; 18-27 17 120 8 Shape n back 1 back> baseline
Leung and Alain (2011)a 16 5 All 25.19; 18-30 13 67.8 19.7 Categorical n back 2 back> 1 back
Leung and Alain (2011)a 13 Visuospatial n back 2 back> 1 back
Li et al. (2014)b 15 0 All 19.56; 19-22 18 16.1 10.5 Letter n back 2 back> baseline
Li et al. (2014)b 10 Letter n back 1 back> baseline
Li et al. (2014)b 7 Letter n back 0 back> baseline
Luo et al. (2014) 25 25 All 23.14; 20-28 12 100 10 Face n back 2 back> 0 back
Lythe et al. (2012) 20 20 All 26.7 (6.7) 2 NA NA Letter n back Linear trend
Malisza et al. (2005) 10 0 NA 18–33 9 NA NA Visuospatial n back 1 back> 0 back
Manelis and Reder (2014) 16 5 All 24 18 400 6 Letter n back Linear trend
Mattfeld et al. (2016) 17 11 NA 28.7 (4.0) 6 NA 5 Letter n back Linear trend
Oren et al. (2017) 24 16 All 29; 22-35 5 20 2 Digit n back Linear trend
Park et al. (2016) 45 25 All 22.87 (~2.205) 39 231.4 6.6 Shape n back 2 back> 0 back
Qin et al. (2009) 27 27 All 20; 18-25 14 100 ~6 Digit n back 2 back> 0 back
R€am€a et al. (2001)b 8 0 All 22; 21-25 32 130 24 Letter n back 2 back> 0 back
R€am€a et al. (2001)b 24 Letter n back 1 back> 0 back
Ravizza et al. (2004) 21 10 All 27.5; 18-37 14 NA 9 Letter n back 3 back> 0 back
Reynolds et al. (2008) 18 7 All 21.8; 19-29 5 230 13 Letter n back 3 back> 1 back
Riccaiardi et al. (2006)a 6 6 All 28 (1) 36 NA 0 Tactile n back 1 back> 0 back
Riccaiardi et al. (2006)a 28 Visuospatial n back 1 back> 0 back
Richter et al. (2013) 34 26 NA 23.8 (~2.15) 25 68 14 Face n back 2 back> 0 back
Sabri et al. (2014) 20 10 All 25 (5) 16 70 8 Letter n back 2 back> 1 back
S�anchez-Carri�on et al. (2008)b 14 NA All 24.2 (4.7) 18 1199 15.3 Digit n back 3 back> 0 back
S�anchez-Carri�on et al. (2008)b 16 Digit n back 2 back> 0 back
Savini et al. (2012) 12 12 All 23.9; 19-32 9 114 �9.3 Shape n back Linear trend
Schmidt et al. (2015)a 32 NA NA 24.6 1 NA 17 Letter n back 3 back> 2 back
Schmidt et al. (2015)a 16 Letter n back 3 back> 0 back
Schmidt et al. (2015)a 12 Letter n back 2 back> 0 back
Schneiders et al. (2011) 48 22 All 23.67; 19-31 22 NA NA Shape n back 2 back> 0 back
Spreng et al. (2014) 36 17 NA 22.3 (3.8) 18 NA NA Face n back 2 back> baseline
Thornton & Conway (2013) 16 6 All 22 (2.3) 16 145 11.5 Face n back Linear trend
Veltman et al. (2003) 21 7 NA 22.7 (3.6) 11 360 NA Letter n back Linear trend
Veltman et al. (2005) 10 3 All 22.9 (1.27) 20 290 0 Letter n back Linear trend
Wesley et al. (2017) 11 4 NA 28.8 (7.8) 3 NA 16 Letter n back 1 back> 0 back
Wu et al. (2017) 45 24 All 24.07 (4.83) 4 NA NA Digit n back 2 back> 0 back
Yan et al. (2011c) 28 12 All 20.4 (1.4) 6 NA NA Visuospatial n back 2 back> 0 back
Yan et al. (2011c) 28 12 All 20.9 (1.5) 8 NA NA Visuospatial n back 2 back> 0 back
Yoo et al. (2004)a 14 9 All 26.3; 21-34 16 NA NA Letter n-back (visual) 2 back> 1 back
Yoo et al. (2004)a 23 Letter n-back (audio) 2 back> 1 back
Yoo et al. (2005) 10 8 All 22.6; 20-30 22 NA NA Face n back 2 back> baseline
Yüksel et al. (2017) 137 80 All 34.5 (10.4) 13 236 25.9 Letter n back 2 back> 0 back
Zhou et al. (2014) 18 9 All 24.94 (7.29) 5 178 NA Letter n back 2 back> 0 back

Note: n¼ sample size; R¼ Right handed; SD ¼ Standard deviation; NA¼ not available; a¼ article includes more than one contrast comparing across task modality;
b¼ article includes more than one contrast comparing across load; c¼ article includes at least two groups; 1¼ Reaction time (RT) difference in milliseconds (ms) be-
tween high and low control load; 2¼Accuracy difference in percentage (%) between high and low control load.
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statistical power (Radua and Mataix-Cols, 2012). Effect-size brain sta-
tistical parametric maps and variances are derived from the reported foci
as well as the t-statistics. The full width at half maximum (FWHM) in
SDM was set at the default (20mm) to control for false positives (see
Radua and Mataix-Cols, 2012). To optimally balance sensitivity and
specificity, resulting statistical maps were thresholded at p¼ 0.005 to
control for family-wise error rate (see Radua and Mataix-Cols, 2012 for
details).
20
2.3. Analysis

Three meta-analyses were performed using GingerALE: (a) young
adults (46 articles; 61 experiments; 1044 participants), (b) middle-aged
adults (24 articles; 33 experiments; 715 participants), and (c) older
adults (13 articles; 19 experiments; 261 participants); all of which satisfy
current ALE power recommendations of including a minimum of 17 ex-
periments (Eickhoff et al., 2017). We also performed contrast analyses
and computed conjunctions and differences among age-groups.



Table 3
Information on source datasets included in the meta-analysis for middle-aged adults.

Article n Male Hand (R) Mean (SD), range Foci RT diff (ms)1 Accuracy diff (%)2 Task Modality Contrast

Alonso-Lana et al. (2016)b 28 12 All 44.01(6.03) 1 NA NA Letter n back 2 back> 1 back
Alonso-Lana et al. (2016)b 1 Letter n back 2 back> baseline
Alonso-Lana et al. (2016)b 3 Letter n back 1 back> baseline
Clark et al. (2017)b 63 28 All 30.91 (6.01) 3 NA NA Letter n back 3 back> 1 back
Clark et al. (2017)b 1 Letter n back 2 back> 1 back
Fern�andez-Corcuera et al. (2013) 41 24 All 40.27 (9.8) 2 NA NA Letter n back 2 back> baseline
Frangou et al. (2008)b 7 2 All 39 (5.88) 11 210 39 Letter n back 2 back> 0 back
Frangou et al. (2008)b 5 Letter n back Linear trend
Goldstein et al. (2005)c 7 7 All 32.1 (6.6) 9 NA 23.4 Letter n back 3 back> 1 back
Goldstein et al. (2005)c 7 0 All 34.1 (12.2) 16 NA 30.8 Letter n back 3 back> 1 back
Gropman et al. (2013) 50 28 All 31.8 (2.7) 43 39 1.7 Letter n back Linear trend
Huang et al. (2016)b 18 6 All 43.17; 36-55 10 253 6.5 Visuospatial n back 2 back> 1 back
Huang et al. (2016)b 5 Visuospatial n back 1 back> 0 back
Jonassen et al. (2012) 37 0 All 37 (13.1) 8 NA NA Letter n back Linear trend
Kim et al. (2006) 12 9 11 34.4; 21-46 8 NA NA Letter n back 2 back> baseline
Koppelstaetter et al. (2008) 15 15 All 25–47 16 145 27 Letter n back 2 back> 0 back
Loughead et al. (2009) 33 18 All 33 (10.55) 13 180 NA Shape n back Linear trend
Marquand et al. (2008) 20 7 All 43.7 (8.6) 19 NA �8 Letter n back 2 back> 0 back
Matsuo et al. (2007)b 15 6 12 37.7 (12.1) 2 100.3 21 Visuospatial n back 2 back> 0 back
Matsuo et al. (2007)b 4 Visuospatial n back 1 back> 0 back
McAllister et al. (1999)b 11 4 All 30.6 (11.2) 2 NA 6.8 Letter n back 2 back> 1 back
McAllister et al. (1999)b 5 Letter n back 1 back> 0 back
Monks et al. (2004) 12 12 All 45.6 (3.52) 14 NA NA Letter n back 2 back> 0 back
Nichols et al. (2014) 118 88 All 30.8 (7.9) 7 170 12.8 Letter n back 3 back> 0 back
Rodriguez-Cano et al. (2014) 64 26 All 46.03(9.83) 2 NA NA Letter n back 2 back> baseline
Rodriguez-Cano et al. (2017)b 26 10 All 46.77 (11.18) 5 NA NA Letter n back 2 back> baseline
Rodriguez-Cano et al. (2017)b 1 Letter n back 2 back> baseline
Scheuerecker et al. (2008)b 23 19 All 32.6 (9.9) 8 77.5 1 Letter n back 2 back> 0 back
Scheuerecker et al. (2008)b 15 Letter n back 2 back> 0 back
Seo et al. (2012) 22 0 All 38.27 (8.48) 18 198 4 Letter n back 2 back> 0 back
Smith et al. (2017) 48 22 All 34.1; 20-53 6 NA NA Letter n back Linear trend
Thaler et al. (2016) 39 19 NA 46.33 (12.24) 12 270 39 Digit n back 3 back> 0 back
van der Wee et al. (2003) 15 4 All 34.8 (9.7) 6 NA 21 Visuospatial n back 3 back> 0 back
Walitt et al. (2016) 13 0 All 44.2 (11.2) 5 �94 31.8 Letter n back 2 back> 0 back

Note: n¼ sample size; R¼ Right handed; SD ¼ Standard deviation; NA¼ not available; a¼ article includes more than one contrast comparing across task modality;
b¼ article includes more than one contrast comparing across load; c¼ article includes at least two groups; 1¼ Reaction time (RT) difference in milliseconds (ms) be-
tween high and low control load; 2¼Accuracy difference in percentage (%) between high and low control load.

Table 4
Information on source datasets included in the meta-analysis for older adults.

Article n Male Hand (R) Mean (SD), range Foci RT diff (ms)1 Accuracy diff (%)2 Task Modality Contrast

Berger et al. (2015) 12 4 NA 74.42(4.7); 68-84 3 NA NA Letter n back 2 back> 1 back
D€ohnel et al. (2008) 16 8 All 61(10.2) 2 NA NA Categorical n back 2 back> baseline
Gawrys et al. (2014) 18 8 All 57.11 (6.62) 1 NA NA Letter n back 2 back> 0 back
Heinzel et al. (2016)b 15 6 All 63 (4.04); 60-75 11 NA 55.1 Digit n back 2, 1-back> baseline
Heinzel et al. (2016)b 15 Digit n back 3 back> baseline
Heinzel et al. (2016)b 17 Digit n back 2 back> baseline
Heinzel et al. (2016)b 11 Digit n back 1 back> baseline
Heinzel et al. (2016)b 14 Digit n back 0 back> baseline
Lee et al. (2013) 14 NA All 64.8 (4.2) 58 NA NA Digit n back 1 back> baseline
Lim et al. (2008) 12 5 All 68.6(6.2) 5 NA NA Letter n back 1 back> baseline
Luis et al. (2015) 20 10 All 62.2 (4.9); 58-66 14 �15.25 2.75 Letter n back 3 back> 1 back
McGeown et al. (2008) 9 3 All 75.11(1.62); 72-77 3 NA NA Letter n back 1 back> baseline
Migo et al. (2015)b 11 7 All 70.27(6.27); 60-80 8 180 NA Letter n back 2 back> 0 back
Migo et al. (2015)b 6 Letter n back 1 back> 0 back
Oren et al. (2017) 28 12 All 71.8(4.6); 65-79 4 50 4 Digit n back Linear trend
Scheller et al. (2017)b 35 15 All 68.82 (5.33); 61-80 33 NA NA Letter n back 2 back> 0 back
Scheller et al. (2017)b 21 Letter n back 1 back> 0 back
Seo et al. (2014) 34 34 All 59.3(5.2) 8 �70.1 �65.4 Letter n back 2 back> 0 back
Waiter et al. (2009) 37 20 NA 69.80 (0.4); 69–70.6 7 NA NA Letter n back 2 back> 0 back

Note: n¼ sample size; R¼ Right handed; SD ¼ Standard deviation; NA¼ not available; a¼ article includes more than one contrast comparing across task modality;
b¼ article includes more than one contrast comparing across load; c¼ article includes at least two groups; 1¼ Reaction time (RT) difference in milliseconds (ms) be-
tween high and low control load; 2¼Accuracy difference in percentage (%) between high and low control load.
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Tables 2–4 include demographic details for each article and experiments
selected for each meta-analysis. To assess the extent to which our results
may have been driven by varying cognitive load across studies, we also
performed additional analyses after the removal of all 3-back contrasts
and 0-back contrasts for each age-group (Supplementary Materials
Tables S1 and S2). Results of these analyses closely resembled the results
21
of the original analyses including all available n-back contrasts.
We further explored associations with age using meta-regression

analysis available in ES-SDM (Radua and Mataix-Cols, 2012; Supple-
mentary Material Table S3). Behavioural performance (e.g., reaction
time and accuracy) was not consistently reported by original articles,
particularly for the older sample, therefore meta-regressions as a function
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of behavioural performance were not performed. For reference, we
tabulated reaction time and accuracy indices from original articles that
report them (Tables 2–4).

3. Results

Data from a total of 2020 adults were included in this study; 1044
young (52.7% male; 83.6% reported as right handed), 715 middle-aged
(48.2% male; 93.4% reported as right handed), and 261 older (50.5%
male; 77.0% reported as right handed) adults. A Fisher's exact test was
used to test for differences in frequency of task modality and contrast
type between age-groups, revealing no significant differences (all
p> 0.05), suggesting that findings were not biased towards any partic-
ular contrast type or task modality.

3.1. ALE maps

Table 5 shows a complete list of concordant brain regions with ste-
reotaxic coordinates in Talairach space identified by all ALE meta-
analyses. Significant results for separate age-groups are illustrated in
Fig. 2, and meta-regression with age is illustrated in Fig. 3.

3.1.1. Young adults
The largest clusters in young adults were found in the prefrontal and

parietal cortices in the left hemisphere, including middle frontal gyri (BA
9, and 10), and inferior parietal lobules (BA 39, 40). The area with the
highest ALE score was the right claustrum. Other areas included the
medial frontal gyri, insula, nuclei of the basal ganglia, and cerebellum.

3.1.2. Middle-aged adults
The largest clusters in middle-aged adults were found in the medial

frontal gyrus (BA 6) and anterior cingulate gyrus (BA 32) and left inferior
frontal gyrus (BA 9). Brain areas with high ALE scores were the inferior
parietal lobules (BA 40) in both hemispheres. Other areas included the
claustrum bilaterally, nuclei of the basal ganglia, and cerebellum.

3.1.3. Older adults
For older adults, the largest clusters were found in the right parietal

cortex (i.e., angular gyrus BA 39, inferior parietal lobule BA 40, and
precuneus BA 7), bilateral medial frontal gyri (BA 6), and anterior
cingulate gyri (BA 32). The region with the highest ALE score was the
right insula. Other regions included the left parietal cortex, left insula,
and right cerebellum. Notably, there were no suprathreshold clusters
identified within lateral prefrontal cortex in the older adults.

3.2. Contrasts

Contrast analyses yielded statistically significant results in terms of
both conjunctions (i.e., common clusters between groups) and differ-
ences (e.g., young adults> older adults; Table 5). Pairwise conjunction
analyses revealed common clusters between young and middle-aged
adults, middle-aged and older adults, as well as young and older
adults, in bilateral inferior parietal lobules (BA 40), bilateral medial and
left superior frontal gyri (BA 6/32), right cingulate gyrus (BA 32),
bilateral insula (BA 13/47), and right precuneus (BA 7/19). The
concordance in the left precuneus (BA 7) was common for young and
older adults, and middle-aged and older adults. Only young and middle-
aged groups showed significant ALE scores in the inferior frontal gyrus
(BA 9), left angular gyrus (BA 39), left basal ganglia, and bilateral
claustrum, whereas only the young and older groups showed significant
ALE scores in the right angular gyrus (BA 39).

Significantly higher ALE scores were observed in the young than
middle-aged group in frontal cortex (BA 9/10 and 6), in the bilateral
middle frontal gyri and left precentral gyrus (BA 44). Regions showing
higher ALE scores in young than older adults were also frontal regions in
superior and middle frontal gyri (BA 9 and 10). No suprathershold
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clusters were observed for middle-aged> young, middle-aged> older,
older> young or older>middle-aged.

3.3. ES-SDM- meta-regression with age

To eliminate the possibility of confounding activity associated age
grouping we performed a meta-regression with age as a continuous
variable (Table S3, Fig. 3). Results show a positive relation with clusters
in the angular gyrus, inferior parietal gyrus and medial frontal gyrus (BA
32) and a negative relation with age with clusters in the inferior frontal
gyrus, inferior parietal gyrus, cerebellum, and anterior thalamus. Note
that the large anterior cluster connects several brain regions that include
bilateral prefrontal cortex and anterior cingulate gyri (Fig. 3). These
findings provide further support for the notion that while young adults
consistently utilize prefrontal cortical regions for working memory pro-
cessing, neural functioning of older adults performing the n-back task
tends to involve the parietal cortex.

4. Discussion

We investigated concordance in brain regions engaged during per-
formance of the n-back task across studies that independently examined
young, middle-aged, and older adults. We report five main findings:

1) We found that regions in the parietal cortex and dorsal cingulate
gyrus are concordant for all age-groups, consistent with past reports
of the brain areas associated with working memory (Owen et al.,
2005; Rottschy et al., 2012; Yaple and Arsalidou, 2018).

2) We also found concordance within the insular cortex and cerebellum
for all age-groups, areas less known for their contribution to working
memory in adults.

3) Young and middle-aged adults also showed concordance in basal
ganglia nuclei (i.e., caudate body, putamen, and globus pallidus) and
the claustrum – the former, but not the latter, having been identified
by previous meta-analyses (Rottschy et al., 2012).

4) Most importantly, we found that prefrontal cortex regions were most
extensively concordant in the young group, less prefrontal cortex
concordance was observed in the middle-aged group, and no signif-
icant concordance was observed in the prefrontal cortex in the older
group, consistent with the notion that prefrontal cortex engagement
changes with age. Contrast analyses between groups verified that
prefrontal cortex (e.g., BA 9, 10) was significantly more concordant
for the young than middle-aged and older groups.

5) Complementary meta-regression analysis between brain coordinate
values and age as a continuous variable revealed a negative relation
with a distributed set of fronto-parietal areas and a positive relation a
few areas in the parietal cortex and medial frontal gyrus (BA 32),
showing converging support for the findings obtained in the main
analyses.

We discuss each key region of the working memory network and
present possible interpretations of our findings. We further discuss
practical and theoretical implications in the field of cognitive aging and
working memory.

4.1. Cingulate cortex

The anterior cingulate gyrus (BA 32) and adjacent areas in the su-
perior and medial prefrontal gyri (BA 6) have been extensively discussed
in terms of their involvement in many types of problem solving (for re-
view, see Nachev et al., 2008). For example, the dorsal cingulate cortex
has been implicated in the coordination of multiple attentional systems,
complexity, and working memory (Peterson et al., 1999; Spreng et al.,
2010, 2013; Shackman et al., 2011; Arsalidou et al., 2013a, 2018; Torta
et al., 2013). From a developmental perspective, the dorsal cingulate
cortex may have a generic role in maintaining task rules and self-control



Table 5
Concordant brain regions related to the n-back task across adulthood.

Young adults

Cluster # Volume mm3 ALE Value x y z Brain region

1 15344 0.065 �42 2 32 L Precentral Gyrus BA 6
0.056 �34 46 18 L Middle Frontal Gyrus BA 10
0.054 �44 20 32 L Middle Frontal Gyrus BA 9
0.052 �30 �6 54 L Middle Frontal Gyrus BA 6
0.029 �42 36 28 L Superior Frontal Gyrus BA 9

2 11096 0.060 �32 �58 40 L Inferior Parietal Lobule BA 39
0.059 �40 �48 40 L Inferior Parietal Lobule BA 40
0.056 �34 �52 38 L Inferior Parietal Lobule BA 40
0.045 �10 �72 48 L Precuneus BA 7

3 7528 0.081 36 �48 40 R Inferior Parietal Lobule BA 40
0.059 30 �58 40 R Superior Parietal Lobule BA 7

4 7024 0.059 �2 12 48 L Superior Frontal Gyrus BA 6
0.045 �4 0 56 L Medial Frontal Gyrus BA 6
0.024 6 26 36 R Medial Frontal Gyrus BA 6

5 5456 0.055 38 32 32 R Middle Frontal Gyrus BA 9
6 4880 0.062 26 �4 54 R Sub-Gyral BA 6
7 3936 0.077 �30 20 4 L Insula BA 13

0.027 �50 10 6 L Precentral Gyrus BA 44
8 2968 0.083 28 20 6 R Claustrum
9 2096 0.043 �30 �54 �32 L Cerebellar Tonsil
10 1488 0.033 14 �70 48 R Precuneus BA 7
11 1360 0.042 30 �58 �30 R Cerebellum, Tuber
12 1224 0.041 �16 2 14 L Caudate Body
13 912 0.031 18 4 14 R Putamen

0.026 12 �6 6 R Thalamus, Ventral Anterior Nucleus
14 808 0.030 44 0 36 R Precentral Gyrus BA 6

0.020 50 12 36 R Middle Frontal Gyrus BA 8
15 768 0.038 8 �72 �26 R Cerebellum, Pyramis

Middle-aged adults
Cluster # Volume mm3 ALE Value x y z Brain region

1 4216 0.030 �2 14 46 L Medial Frontal Gyrus BA 6
0.027 �2 6 52 L Superior Frontal Gyrus BA 6
0.015 8 20 36 R Cingulate Gyrus BA 32

2 3216 0.023 �48 6 24 L Inferior Frontal Gyrus BA 9
0.023 �40 0 34 L Precentral Gyrus BA 6
0.022 �40 6 28 L Inferior Frontal Gyrus BA 9
0.018 �42 20 34 L Precentral Gyrus BA 9

3 3008 0.038 40 �48 40 R Inferior Parietal Lobule BA 40
0.016 28 �60 38 R Precuneus BA 19
0.015 32 �66 42 R Precuneus BA 19

4 2920 0.030 �36 �48 38 L Inferior Parietal Lobule BA 40
0.026 �36 �62 40 L Inferior Parietal Lobule BA 39

5 1136 0.022 32 �58 �32 R Cerebellar Tonsil
0.019 32 �62 �22 R Cerebellum, Declive

6 1016 0.021 36 28 36 R Middle Frontal Gyrus BA 9
7 976 0.024 30 20 4 R Claustrum
8 960 0.021 �34 22 �2 L Extra-Nuclear BA 47

0.021 �30 18 2 L Claustrum
9 840 0.020 �14 �4 18 L Caudate Body

0.018 �16 0 6 L Lateral Globus Pallidus
10 760 0.021 �30 2 52 L Middle Frontal Gyrus BA 6

Older adults
Cluster # Volume mm3 ALE Value x y z Brain region

1 2800 0.020 32 �54 36 R Angular Gyrus BA 39
0.020 36 �58 46 R Inferior Parietal Lobule BA 7
0.017 28 �62 38 R Precuneus BA 7
0.016 38 �50 36 R Inferior Parietal Lobule BA 40
0.015 28 �64 28 R Precuneus BA 7

2 1784 0.018 �6 16 46 L Medial Frontal Gyrus BA 6
0.017 �6 10 48 L Superior Frontal Gyrus BA 6
0.015 6 14 44 R Medial Frontal Gyrus BA 6
0.015 6 22 40 R Cingulate Gyrus BA 32
0.013 �6 2 52 L Medial Frontal Gyrus BA 6
0.012 4 6 46 R Medial Frontal Gyrus BA 32

3 1360 0.018 �32 �54 34 L Inferior Parietal Lobule BA 40
0.018 �28 �66 36 L Precuneus BA 7

4 1176 0.024 30 22 2 R Insula BA 13
5 992 0.018 �34 �8 50 L Precentral Gyrus BA 6

0.015 �24 �2 52 L Sub-Gyral BA 6
0.013 �34 4 58 L Middle Frontal Gyrus BA 6

6 880 0.019 �32 20 6 L Insula BA 13

(continued on next page)
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Table 5 (continued )

Young adults

Cluster # Volume mm3 ALE Value x y z Brain region

7 808 0.016 26 �58 �30 R Cerebellum.Pyramis
0.015 36 �58 �24 R Cerebellum Culmen

Conjunctions
Young-AND-Middle-aged
Cluster # Volume mm3 ALE Value x y z Brain region

1 3472 0.030 �2 14 46 L Medial Frontal Gyrus BA 6
0.027 �2 6 52 L Superior Frontal Gyrus BA 6

2 2848 0.023 �48 6 24 L Inferior Frontal Gyrus BA 9
0.023 �40 0 34 L Precentral Gyrus BA 6
0.022 �40 6 28 L Inferior Frontal Gyrus BA 9
0.018 �42 20 34 L Precentral Gyrus BA 9

3 2712 0.038 40 �48 40 R Inferior Parietal Lobule BA 40
0.016 28 �60 38 R Precuneus BA 19
0.015 32 �66 42 R Precuneus BA 19

4 2512 0.030 �36 �48 38 L Inferior Parietal Lobule BA 40
0.024 �36 �60 40 L Inferior Parietal Lobule BA 39

5 968 0.024 30 20 4 R Claustrum
6 960 0.021 36 28 36 R Middle Frontal Gyrus BA 9
7 832 0.021 �34 22 �2 L Extra-Nuclear BA 47

0.021 �30 18 2 L Claustrum
8 688 0.022 32 �58 �32 R Cerebellar Tonsil
9 456 0.021 �30 2 52 L Middle Frontal Gyrus BA 6
10 360 0.020 �14 �4 18 L Caudate Body

0.018 �16 0 6 L Lateral Globus Pallidus
11 8 0.012 8 24 36 R Cingulate Gyrus BA 32

Young-AND-Older
Cluster # Volume mm3 ALE Value x y z Brain region

1 2104 0.020 32 �54 36 R Angular Gyrus BA 39
0.020 36 �58 46 R Inferior Parietal Lobule BA 7
0.017 28 �62 38 R Precuneus BA 7
0.016 38 �50 36 R Inferior Parietal Lobule BA 40
0.015 30 �64 30 R Angular Gyrus BA 39

2 1648 0.018 �6 16 46 L Medial Frontal Gyrus BA 6
0.017 �6 10 48 L Superior Frontal Gyrus BA 6
0.015 6 14 44 R Medial Frontal Gyrus BA 6
0.015 6 22 40 R Cingulate Gyrus BA 32
0.013 �6 2 52 L Medial Frontal Gyrus BA 6
0.012 4 6 46 R Medial Frontal Gyrus BA 32

3 1168 0.024 30 22 2 R Insula BA 13
4 1048 0.018 �32 �54 34 L Inferior Parietal Lobule BA 40

0.018 �28 �66 36 L Precuneus BA 7
5 880 0.019 �32 20 6 L Insula BA 13
6 784 0.018 �34 �8 50 L Precentral Gyrus BA 6

0.015 �24 �2 52 L Sub-Gyral BA 6
7 352 0.016 26 �58 �30 R Cerebellum, Pyramis

0.015 26 �62 �28 R Cerebellum, Pyramis
0.013 36 �58 �26 R Cerebellum, Culmen

Middle-aged-AND-Older
Cluster # Volume mm3 ALE Value x y z Brain region

1 1008 0.018 �6 16 46 L Medial Frontal Gyrus BA 6
0.016 �4 10 48 L Superior Frontal Gyrus BA 6
0.014 6 14 44 R Medial Frontal Gyrus BA 6
0.013 �6 2 52 L Medial Frontal Gyrus BA 6

2 992 0.018 32 �54 38 R Inferior Parietal Lobule BA 40
0.016 28 �62 38 R Precuneus BA 7
0.016 38 �50 36 R Inferior Parietal Lobule BA 40

3 896 0.022 30 22 2 R Insula BA 13
4 456 0.019 �32 18 4 L Insula BA 13
5 248 0.014 36 �60 �24 R Cerebellum, Tuber

0.013 28 �60 �30 R Cerebellum, Pyramis
0.012 30 �64 �24 R Cerebellum, Uvula

6 224 0.016 �34 �50 34 L Inferior Parietal Lobule BA 40
7 160 0.013 �26 0 52 L Sub-Gyral BA 6

0.013 �30 �2 50 L Middle Frontal Gyrus BA 6
8 88 0.014 �28 �64 38 L Precuneus BA 7
9 80 0.014 6 20 40 R Cingulate Gyrus BA 32

Contrasts
Young>Middle
Cluster # Volume mm3 ALE Value x y z Brain region

1 776 3.540 �35.3 40.7 27.5 L Middle Frontal Gyrus BA 9

(continued on next page)
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Table 5 (continued )

Young adults

Cluster # Volume mm3 ALE Value x y z Brain region

3.353 �31.5 44.2 24.5 L Middle Frontal Gyrus BA 10
2 648 3.719 26.9 �9.8 57.6 R Middle Frontal Gyrus BA 6

3.540 22.6 �8.6 52 R Middle Frontal Gyrus BA 6
3 104 3.239 �41 15 7.5 L Precentral Gyrus BA 44

Young>Older
Cluster # Volume mm3 ALE Value x y z Brain region

1 1152 3.719 �38 39.1 29.3 L Superior Frontal Gyrus BA 9
3.540 �34.4 43.8 25.7 L Middle Frontal Gyrus BA 10

2 56 3.156 38 39 19 R Middle Frontal Gyrus BA 10

Middle-aged> Young
no suprathreshold clusters
Middle-aged>Older
no suprathreshold clusters
Older> Young
no suprathreshold clusters
Older>Middle
no suprathreshold clusters

Note: Talairach coordinates (x, y, z) of brain regions surviving a cluster-level threshold of p< 0.05 and a cluster forming threshold of p< 0.01 for single studies. Contrast
threshold was set to p¼ 0.001, 5000 permutations, > 50mm3, L¼ Left, R¼ Right; BA ¼ Brodmann Area, ALE¼ Activation Likelihood Estimate. Brain labels auto-
matically generated in GingerALE using the Talairach Atlas.
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(Fair et al., 2009; Arsalidou and Pascual-Leone, 2016; Arsalidou et al.,
2018). Past reports also highlight the role of parietal and cingulate
cortices in working memory performance of typical adults (Rottschy
et al., 2012), including the n-back task in particular (Owen et al., 2005).
Our findings are consistent with the latter reports in demonstrating that
these brain areas play a critical role in n-back task performance across
adulthood.

4.2. Subcortical regions

The basal ganglia are a set of sub-cortical nuclei; initially known for
Fig. 2. (left) ALE maps for young, middle-aged, and older adults showing significant c
all age-groups. All coordinates are listed in Table 5.
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functions related to motor movements, they are now also recognized for
their involvement in executive function, reward, and emotion (Arsalidou
et al., 2013b). Together with sub-lobar structures (e.g., the insula), the
basal ganglia have been associated with learning and training tasks
(Chein and Schneider, 2005; Thomas et al., 2004; Ferreira et al., 2015).
Based on past work (e.g., Arsalidou and Taylor, 2011; Arsalidou et al.,
2013b), we propose that the basal ganglia may have a generic contri-
bution to the coordination of motivated top-down and bottom-up deci-
sion-making. The claustrum is a thin sub-lobar structure seated between
the basal ganglia and insula that is anatomically distinct from (Mathur,
2014), and shows different structural connectivity than (Park et al.,
oncordance superimposed on an anatomical brain. (right) 3D rendered images of



Fig. 3. Meta-regression analysis on age as a continuous variable. Clusters associated with activity in young adults during n-back tasks are displayed in red, while
clusters associated with performance of older adults are displayed in blue. All coordinates are reported in Table S3.
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2012), adjacent structures. The functional role of the claustrum in the
healthy human brain is less well understood, and its role in working
memory has not been discussed. Recent reviews implicate the claustrum
in the creation of conscious percepts by way of cross-modal integration
(Crick and Koch, 2005; Goll et al., 2015, for reviews). Although, more
research is needed to clarify the functional role of the claustrum in
working memory, due to its topographical location between the basal
ganglia and the insula, we speculate that it may have a role in integrating
motivated top-down processes (Arsalidou et al., 2018). The absence of
concordance in the basal ganglia and claustrum in older adults may relate
to either a motivational difference in their approach to problem solving
(e.g., Blanchard-Fields et al., 2007), typical age-related neurophysio-
logical changes in the basal ganglia (e.g., Wang et al., 2010), or both.
Further experimentation is needed to address this question.
4.3. Parietal cortex

In the current study we found that the parietal cortices are consis-
tently engaged when performing the n-back task for all age-groups,
which corresponds with the consistency of inferior parietal lobule vol-
ume across age (Raz et al., 2005). Specifically, the inferior parietal lob-
ules have been implicated in multiple problem solving and visual-spatial
tasks (e.g., Newman et al., 2003; Grabner et al., 2007; Bisley and Gold-
berg, 2010), which rely heavily on working memory. Past meta-analyses
classified parietal cortex regions as part of a fronto-parietal system that is
critical for working memory performance in adults (Owen et al., 2005;
Rottschy et al., 2012). However, in older adults, this region tends to
retain and/or ameliorate its functional role across adulthood. Specif-
ically, our meta-regression analysis shows a positive relation between age
and concordance in the parietal cortex bilaterally (BA 7 and BA 40). This
relation may reflect alternative strategies employed by older adults,
which could suggest either functional reorganization/compensation
(Reuter-Lorenz and Lustig, 2005; Andrews-Hanna et al., 2007; Davis
et al., 2008), or overcompensation and inefficiency (Rypma and
D'Esposito, 2000; Rypma et al., 2005) in older adulthood. This remains a
target for future research, as indices of behavioural performance are
necessary to delineate differences driven by reorganization of function
(i.e., comparable behavioural performance) vs. overcompensation (i.e.,
lower behavioural performance).
4.4. Insula and cerebellum

Our results suggest that the insula and cerebellum are also critical for
performing the n-back task across adulthood – regions not reported in
previous meta-analyses examining n-back task performance in adults, nor
highlighted as playing a central role in working memory more generally
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(Owen et al., 2005). The role of the insula in working memory tasks has
been attributed to task-set maintenance in support of attentional
awareness (Rottschy et al., 2012). Despite increasing shrinkage of the
cerebellum in older adults (Raz et al., 2005), a recent meta-analysis of
n-back studies with children revealed concordance in the insula and
cerebellum, and attributed their roles to visual sequencing under time
constraints and a generic feeling of effort for intrinsically motivated
behaviours, respectively (Yaple and Arsalidou, 2018). This is consistent
with past interpretations of the insula as a core region of the salience
network, responsible for the interaction of cognition, emotion, and
interoception (Uddin et al., 2014; Duerden et al., 2013; Seeley et al.,
2007; Pascual-Leone et al., 2015; Arsalidou et al., 2018).
4.5. Prefrontal cortex

A main goal of our study was to identify age-related changes in pre-
frontal cortex engagement during n-back task performance across
adulthood. Our meta-analyses showed that young adults have the most
extensive concordance in the dorsolateral prefrontal cortex, specifically
in middle frontal gyri (BA 9, 46 and 10), middle-aged adults show more
focal concordance centered on the inferior and middle frontal gyri (BA
9), and older adults show no supra threshold clusters of concordance in
the prefrontal cortex. Therefore, the results of the meta-analysis provide
evidence that prefrontal cortex engagement decreases linearly across the
adult lifespan. Contrast analyses confirmed that young adults show
significantly more concordance in the prefrontal cortex than either
middle-aged or older adults. The prefrontal cortex is known for its role in
higher order cognitive processes, such as working memory, and past
meta-analyses of adults performing the n-back task have highlighted its
role in the core network underlying working memory (Owen et al., 2005;
Rottschy et al., 2012).

A summary of previous studies captured in Table 1 indicates that
although prefrontal cortex activity in older adults was observed in most
studies, the specificity was also highly variable across studies (e.g., left
vs. right vs. bilateral prefrontal cortex activity), suggesting that the left or
right hemisphere may be favoured less consistently across older adults.
This explanation may be in agreement with the “hemispheric asymmetry
reduction in older adults” (HAROLD; Cabeza et al., 2004) hypothesis and
general theories of stage-wise maturation in adulthood (Pascual-Leone,
1983). Specifically, stage-wise maturation may correspond to age-related
reorganization of function rather than a progressive loss of function
(Reuter-Lorenz and Lustig, 2005; Andrews-Hanna et al., 2007). Inter-
estingly, we observed parallel results in older adults compared to what is
found in early stages of development in childhood (Yaple and Arsalidou,
2018).

Similarly, heterogeneous hemispheric asymmetry of prefrontal cortex
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contributions may vary as a function of the tasks' mental-demand and the
individuals' mental-attentional capacity, which may be more variable in
older than young adults. This has been called the Right-Left-Right hy-
pothesis (Arsalidou et al., 2018) and is derived from early developmental
theoretical predictions (Pascual-Leone, 1987, 1989). Specifically, pro-
cessing very easy items with low task demand would favour the right
hemisphere, whereas items that are effortful and within an individual's
mental-attentional capacity would favour the left hemisphere, yet when
items have a high task demand above and beyond an individual's
mental-attentional capacity, the right hemisphere is then favoured in a
repertoire search of an effective problem-solving strategy.

An alternative, but complementary explanation may be that perfor-
mance accuracy of the older adult group is more variable than younger
adults (Tables 2 and 4), which may also contribute to this null finding in
older adults. Another potential alternative may be the lower number of
experiments with older participants in these analyses. However, our
analysis of older adults included 19 contrast experiments, satisfying the
recommended minimum (n� 17 experiments) for sufficient power to
detect meaningful concordance (Eickhoff et al., 2017); importantly
future meta-analyses, taking into account additional older adult studies,
should verify this finding. Moreover, based on 33 experiments, we
observed that middle-aged adults, on average ~13 years older than the
young adults, already exhibit a significant decrease in prefrontal cortex
concordance compared to the young adults. Finally, there was a differ-
ence in the age-range across groups, with the young adult group having
the smallest range (17 years), the middle-age group having a larger range
(25 years), and the older adult group having the largest age-range (30
years), which could have contributed to differential variability in
concordance across studies between these age-groups. Overall, we pro-
pose that the prefrontal cortex in older adults may be differentially
engaged, in terms of hemispheric laterality, as a function of age.

4.6. Limitations

The current meta-analysis examines brain areas associated with n-
back tasks across adulthood. The results we report here represent
concordance in brain areas engaged across different types of n-back tasks.
We note, potential limitations related to meta-analysis methods in gen-
eral, the ALE method in particular, and the choices we made due to
methodology employed in the original articles. Any meta-analysis
method is prone to publication bias as we only consider results avail-
able in the published literature, and original studies that report result
coordinates. A limitation of the coordinate-based ALE method is that it
uses peak activation coordinates rather than activation magnitude to
estimate ALE scores (Salimi-Khorshidi et al., 2009). Moreover, we cannot
control for statistical methodologies used in original articles for thresh-
olding the data. However, a growing trend to store unthresholded sta-
tistical maps is underway, allowing researchers to perform image-based
meta-analyses (Gorgolewski et al., 2015).

Another unavoidable methodological limitation – given the age-
ranges of our three age-groups and because the age-ranges of each
sample included were determined in the original articles –was that many
articles had to be eliminated because they reported results for groups
with age-ranges that spanned all of our age-groups. Similarly, we elimi-
nated many studies that focussed on atypical aging and did not report
within-group coordinates for a healthy older control group. It is critical
for future work to report results for narrower age-ranges and for age-
matched controls.

Moreover, to facilitate second-order analyses of brain-behavior re-
lations, future neuroimaging studies are encouraged to report behav-
ioural indices associated with tasks, at least as supplementary material.
Finally, we compiled all contrasts irrespective of difficulty level, both to
be consistent with previous meta-analyses (Owen et al., 2005; Rottschy
et al., 2012), and because there are too few studies of the n-back task in
older adults to date to be able to analyze different levels of difficulty
separately using a meta-analytic approach. Further, to compensate for
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variation of task difficulty, we performed analyses with ample sample
size omitting 3-back and 0-back contrasts. Furthermore, to account for
other possible confounds associated with group selection, we used
meta-regression analysis. The results of these analyses were similar to the
findings of the main analysis: that older adults performing the n-back task
show less reliable prefrontal concordance compared to young adults.

5. Conclusions

A set of brain areas sustains performance on the n-back task across
adulthood. Brain areas that remain important throughout adulthood
include the parietal cortex, dorsal cingulate cortex, insula, and cere-
bellum. Although concordance was identified for young and middle-aged
adults in the basal ganglia and claustrum, these areas were not concor-
dant for older adults. Critically, prefrontal cortex was most extensively
concordant in young adults, less so in middle-aged adults, and not
concordant in older adults. We hypothesize that variability in the
compensatory recruitment of prefrontal cortex and hemispheric asym-
metry in the elderly years, driven by a trade-off between task-difficulty
and individuals' cognitive integrity, may underlie this finding. In other
words, the findings suggest that there is more individual variability in the
way that older adults maintain and/or manipulate information than do
their younger counterparts. Specific causes and correlates of increased
variability of prefrontal cortex engagement in older adults warrant
further study. However, the fact that by middle-age, healthy adults
already show declining concordance of working memory-related activity
in the prefrontal cortex suggests that the neurological changes underly-
ing age-related working memory decline are a gradual consequence of
typical aging, rather than a consequence of sub-clinical onset of pathol-
ogy (e.g., mild cognitive impairment/dementia). We highlight that this
result would not be revealed by traditional review approaches, as dif-
ferences in prefrontal activity under different domains, task designs, and
experimental procedures were evident in older adults. Practically, ste-
reotaxic coordinates reported in these meta-analyses can serve as a
topographical atlas for region of interest analyses in young, middle-aged,
and older adults, as well as brain regions common across all ages.
Theoretically, our results show that the core brain areas that support
performance on working memory across the lifespan are found in parietal
and insular cortices and the cerebellum. Because prefrontal activity is
observed in original studies and found concordant in meta-analyses, we
believe our finding is in agreement with the notion that cognitive aging
involves reorganization of function, rather than a progressive loss of
function (Reuter-Lorenz and Lustig, 2005; Andrews-Hanna et al., 2007).
Specifically, we encourage future investigations of working memory
across the adult lifespan to (a) use theory guided or empirically justified
age groups (e.g., adult stages of cognition suggest about 10–15 year gaps
(Pascual-Leone, 1983) and machine learning algorithms can predict an
individual's biological age within about �4 or 5 years (e.g., Vidaki et al.,
2017; Cole et al., 2017)); (b) control and report behavioural scores
associated with one or more cognitive measures; and (c) conduct further
meta-analyses when more studies with older adults become available, to
further explore concordant patterns of brain activation among different
working memory loads, n-back types, and task-types in older, as well as
middle aged and young adults. The neuroscience of cognitive aging re-
mains a fascinating area for research. Overall, the comprehensive results
presented in this paper provide a valuable resource, which should inform
future research examining and comparing brain activity underlying
working memory in typical and atypical populations across the adult
lifespan.
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